Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## Bis[ $\mu$-bis(diphenylphosphino)methane- $\left.\kappa^{2} P: P^{\prime}\right]-$ digold(I) bis(perchlorate)

Qian-Yong Cao, ${ }^{\text {a }}$ * Bei Yin ${ }^{\text {a }}$ and Jing-Hua Liu ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, Nanchang University, Nanchang, 330047, People's Republic of China, and ${ }^{\mathbf{b}}$ School of Science, Nanchang University, Nanchang, 330047, People's Republic of China

Correspondence e-mail: cqyong@ncu.edu.cn

## Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.011 \AA$
$R$ factor $=0.038$
$w R$ factor $=0.079$
Data-to-parameter ratio $=17.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]In the centrosymmetric title compound, $\left[\mathrm{Au}_{2}\left(\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{P}_{2}\right)_{2}\right]$ $\left(\mathrm{ClO}_{4}\right)_{2}$, the $\mathrm{Au}^{1}$ ion adopts a linear geometry with a weak intra-cation $\mathrm{Au} \cdots \mathrm{Au}$ interaction, characterized by a metalmetal separation of 2.9258 (9) Å.

## Comment

Binuclear gold complexes including the $\left[\mathrm{Au}_{2}(\mathrm{dppm})_{2}\right]^{2+}$ cation [dppm is bis(diphenylphosphino)methane] and different counter-ions are of interest owing to their rich luminescence and bonding properties (Khan et al., 1988; King et al., 1989; Che et al., 1989; Li et al., 1992). Some of them have been structurally characterized (Jaw et al., 1989; Khan et al., 1989; Wang et al., 1989; Porter et al., 1989; Liou et al., 1994; Wang \& Liu, 1994; Bauer \& Schmidbaur, 1997; Wu et al., 2003). Here, we report another crystal structure belonging to this family of complexes, namely $\left[\mathrm{Au}_{2}(\mathrm{dppm})_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$, (I).

(I)

The asymmetric unit of (I) consists of one half-cation $[\mathrm{Au}(\mathrm{dppm})]^{+}$and a perchlorate anion; there is a centre of symmetry at the mid-point of the $\mathrm{Au} \cdots \mathrm{Au}$ vector. The $\mathrm{Au}^{\mathrm{I}}$ ions in $\left[\mathrm{Au}_{2}(\mathrm{dppm})_{2}\right]^{2+}$ are doubly bridged by two dppm ligands (Fig. 1) and adopt a linear coordination (Table 1). The Au $1 \cdots$ Au1 ${ }^{1}$ separation [symmetry code: (i) $1-x, 1-y, 1-z$ ] of 2.9258 (9) $\AA$ is within the normal range expected for a weak $\mathrm{Au} \cdots \mathrm{Au}$ interaction (Schmidbaur, 1995).

## Experimental

The title compound was prepared by a literature method (Li et al., 1992). Well formed colourless crystals suitable for X-ray diffraction measurements were grown by slow diffusion of diethyl ether into a solution of the salt in acetonitrile at 298 K .

Received 20 August 2006
Accepted 20 September 2006

## Crystal data

| $\left[\mathrm{Au}_{2}\left(\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{P}_{2}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ | $Z=2$ |
| :--- | :--- |
| $M_{r}=1361.56$ | $D_{x}=1.822 \mathrm{Mg} \mathrm{m}^{-3}$ |
| Monoclinic, $P 2_{1} / n$ | Mo $K \alpha$ radiation |
| $a=10.569(4) \AA$ | $\mu=6.19 \mathrm{~mm}^{-1}$ |
| $b=17.648(6) \AA$ | $T=293(2) \mathrm{K}$ |
| $c=13.797(5) \AA$ | Block, colorless |
| $\beta=105.287(5)^{\circ}$ | $0.28 \times 0.20 \times 0.14 \mathrm{~mm}$ |
| $V=2482.3(15) \AA^{3}$ |  |

## Data collection

Bruker SMART APEX-II CCD area-detector diffractometer $\varphi$ and $\omega$ scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

$$
T_{\min }=0.225, T_{\max }=0.420
$$

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.079$
$S=0.95$
5069 reflections
298 parameters
$Z=2$
$\mathrm{D}_{x}=1.822 \mathrm{Mg} \mathrm{m}$
Mo $K \alpha$ radiation
= 293
Block, colorless
$0.28 \times 0.20 \times 0.14 \mathrm{~mm}$

13943 measured reflections 5069 independent reflections 3681 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.056$
$\theta_{\text {max }}=26.4^{\circ}$

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0322 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=1.56 \mathrm{e} \mathrm{A}^{-3}$
$\Delta \rho_{\min }=-1.23$ e $\AA^{-3}$

Table 1
Selected geometric parameters ( $\left(\AA,{ }^{\circ}\right.$ ).

| $\mathrm{Au} 1-\mathrm{P} 2^{\mathrm{i}}$ | $2.3118(15)$ | $\mathrm{Au} 1-\mathrm{Au} 1^{\mathrm{i}}$ | $2.9258(9)$ |
| :--- | ---: | :--- | ---: |
| $\mathrm{Au} 1-\mathrm{P} 1$ | $2.3138(15)$ |  |  |
| $\mathrm{P} 2^{\mathrm{i}}-\mathrm{Au} 1-\mathrm{P} 1$ | $177.14(5)$ | $\mathrm{P} 1-\mathrm{Au} 1-\mathrm{Au} 1^{\mathrm{i}}$ | $91.81(4)$ |
| $\mathrm{P} 2^{\mathrm{i}}-\mathrm{Au} 1-\mathrm{Au} 1^{\mathrm{i}}$ | $91.02(4)$ |  |  |

Symmetry code: (i) $-x+1,-y+1,-z+1$.

All H atoms were positioned geometrically and treated as riding $(\mathrm{C}-\mathrm{H}=0.97 \AA$ for methylene H atoms and $\mathrm{C}-\mathrm{H}=0.93 \AA$ otherwise), with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The highest peak and deepest hole in the final difference map are associated with the Au1 site (at distances of 0.91 and $0.86 \AA$, respectively).

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

This work was supported by the Bureau of Education of Jiangxi Province (2006, No. 29). We are also grateful to the Center for Analysis and Testing, Nanchang University, for financial support (grant No. 2006020).


Figure 1
The structure of the cation and anion of (I), showing the atom-numbering scheme. The suffix A corresponds to symmetry code i in Table 1. Displacement ellipsoids are drawn at the $30 \%$ probability level and H atoms are omitted for clarity.

## References

Bauer, A. \& Schmidbaur, H. (1997). J. Chem. Soc. Dalton Trans. pp. 11151116.

Bruker (1998). SAINT (Version 4.00), SMART (Version 5.0) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.
Che, C.-M., Kwong, H.-L., Yam, V. W.-W. \& Cho, K.-C. (1989). J. Chem. Soc. Chem. Commun. pp. 885-886.
Jaw, H. R. C., Savas, M. M., Rogers, R. D. \& Mason, W. R. (1989). Inorg. Chem. 28, 1028-1037.
Khan, Md. N. I., Fackler, J. P. Jr, King, C., Wang, J. C. \& Wang, S. (1988). Inorg. Chem. 27, 1672-1673.
Khan, Md. N. I., King, C., Heinrich, D. D., Fackler, J. P. Jr \& Porter, L. C. (1989). Inorg. Chem. 28, 2150-2154.

King, C., Wang, J.-C., Khan, Md. N. I. \& Fackler, J. P. Jr (1989). Inorg. Chem. 28, 2145-2149.
Li, D., Che, C.-M., Kwong, H.-L. \& Yam, V. W.-W. (1992). J. Chem. Soc. Dalton Trans. pp. 3325-3329.
Liou, L.-S., Liu, C.-P. \& Wang, J.-C. (1994). Acta Cryst. C50, 538-540.
Porter, L. C., Khan, Md. N. I., King, C. \& Fackler, J. P. (1989). Acta Cryst. C45, 947-949.
Schmidbaur, H. (1995). Chem. Soc. Rev. 24, 391-400.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Wang, J.-C., Khan, Md. N. I. \& Fackler, J. P. (1989). Acta Cryst. C45, 1482-1485.
Wang, J.-C. \& Liu, L.-K. (1994). Acta Cryst. C50, 704-706.
Wu, M., Zhang, L. \& Chen, Z. (2003). Acta Cryst. E59, m72-m73.


[^0]:    (C) 2006 International Union of Crystallography All rights reserved

